某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.(Ⅰ)写出关于的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的.
已知,点满足,记点的轨迹为. (Ⅰ)求轨迹的方程;(Ⅱ)若直线过点且与轨迹交于、两点. (i)设点,问:是否存在实数,使得直线绕点无论怎样转动,都有成立?若存在,求出实数的值;若不存在,请说明理由.(ii)过、作直线的垂线、,垂足分别为、,记,求的取值范围.
)袋中装着标有数字1,2,3的小球各2个,从袋中任取2个小球,每个小球被取出的可能性都相等. (Ⅰ)求取出的2个小球上的数字互不相同的概率; (Ⅱ)用表示取出的2个小球上的数字之和,求随机变量的概率分布与数学期望.
设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称, 且当x∈[ 2,3 ] 时,222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
如图所示,在直三棱柱中,,,,,是棱的中点.(Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.
已知向量=(1,1),向量与向量的夹角为,且. (1)求向量; (2)设向量=(1,0),向量=(cosx,2cos2()),其中0<x<,若,试求的取值范围.