已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上.(Ⅰ)求证:平面;(Ⅱ)若点D恰为BC中点,且,求的大小;(III)若,且当时,求二面角的大小.
如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.(1)请在木块的上表面作出过的锯线,并说明理由;(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
已知向量.(1)当时,求的值;(2)设函数,当时,求的值域.
设函数在点处的切线方程为.(1)求实数及的值;(2)求证:对任意实数,函数有且仅有两个零点.
在数列中,已知,,,,数列的前项和为,数列的前项和为,且满足,,其中为正整数.(1)求数列的通项公式;(2)问是否存在正整数,,使成立?若存在,求出所有符合条件的有序实数对,若不存在,请说明理由.
已知椭圆的上顶点为,直线交椭圆于两点,设直线的斜率分别为.(1)若时,求的值;(2)若时,证明直线过定点.