已知,写出用表示的关系等式,并证明这个关系等式.
如图,用长为12米的铁丝弯成下部为矩形,上部为半圆形的框架窗户,若半圆半径为米.(Ⅰ)求此框架围成的面积与的函数式,并写出它的定义域;(Ⅱ)求半圆的半径是多长时,窗户透光的面积最大?
求下列函数的定义域:(Ⅰ);(Ⅱ).
已知全集为,集合,集合.求:(Ⅰ); (Ⅱ).
(本小题满分12分)已知椭圆,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过的椭圆的右焦点任作一条斜率为()的直线交椭圆于A,B两点,问在右侧是否存在一点D,连AD、BD分别交直线于M,N两点,且以MN为直径的圆恰好过,若存在,求的值;若不存在,请说明理由.
(本小题满分12分)数列中,已知,时,.数列满足:.(Ⅰ)证明:为等差数列,并求的通项公式;(Ⅱ)记数列的前项和为,是否存在正整数,使得成立?若存在,求出所有符合条件的有序实数对;若不存在,说明理由.