(本小题满分16分)经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
已知是公比大于1的等比数列,是函数的两个零点。 (1)求数列的通项公式; (2)若数列满足,且,求的最小值。
(本小题满分14分)(注意:在试题卷上作答无效) 已知曲线,从上的点作轴的垂线,交于点,再从点作轴的垂线,交于点,设 (1)求数列的通项公式; (2)记,数列的前项和为,试比较与的大小; (3)记,数列的前项和为,试证明:
(本小题14分,计入总分) 已知数列满足: ⑴求; ⑵当时,求与的关系式,并求数列中偶数项的通项公式; ⑶求数列前100项中所有奇数项的和.
(本小题满分13分)已知平面上三个向量的模均为1,它们相互之间的夹角均为。 (I)求证:; (II)若,求的取值范围。
(本小题满分12分) 已知,函数,时,,求常数,的值.