(本小题满分12分)在某海岸A处,发现北偏东方向,距离A处n mile的B处有一艘走私船在A处北偏西的方向,距离A处n mile的C处的缉私船奉命以n mile/h的速度追截走私船. 此时,走私船正以5 n mile/h的速度从B处按照北偏东方向逃窜,问缉私船至少经过多长时间可以追上走私船,并指出缉私船航行方向.
已知函数的图象在点处的切线方程为. (1)用表示; (2)若函数在上的最大值为2,求实数a的取值范围.
已知数列的前项和为,若,且. (1)求证:为等比数列; (2)求数列的前项和.
设的三个内角A,B,C所对的边长分别为a,b,c. 平面向量,,,且. (1)求角的大小; (2)当时,求函数的值域.
设命题;命题. (1)若命题所表示不等式的解集为,求实数的值; (2)若是的必要不充分条件,求实数t的取值范围.
已知函数. (1)求的单调区间; (2)若,且对任意恒成立,求k的最大值. (3)对于在中的任意一个常数a,是否存在正数,使得成立?请说明理由.