已知是定义在上的奇函数,当时,函数的解析式为.(1)试求的值;(2)写出在上的解析式;(3)求在上的最大值.
已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2+.(1)当∈时,求函数f(x)的值域;(2)当x∈时,若f(x)=8,求函数f的值;(3)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y=g(x)的图象,求函数g(x)的表达式并判断奇偶性.
已知函数f(x)=4cos x·sin+a的最大值为2.(1)求a的值及f(x)的最小正周期;(2)求f(x)的单调递增区间.
函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.(1)求函数f(x)的解析式;(2)设α∈,f=2,求α的值.
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.(1)当a=2时,求证:AO⊥平面BCD.(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD.(2)求二面角D-BA1-A的余弦值.(3)求点B1到平面A1BD的距离.