已知是定义在上的奇函数,当时,函数的解析式为.(1)试求的值;(2)写出在上的解析式;(3)求在上的最大值.
π 为圆周率, e=2.71828 为自然对数的底数. (1)求函数 f x = ln x x 的单调区间; (2)求 e3 , 3e , eπ , πe , 3π , π3 这6个数中的最大数与最小数; (3)将 e3 , 3e , eπ , πe , 3π , π3 这6个数按从小到大的顺序排列,并证明你的结论.
在平面直角坐标系 x O y 中,点 M 到点 F ( 1 , 0 ) 的距离比它到 y 轴的距离多1,记点 M 的轨迹为 C . (1)求轨迹为 C 的方程; (2)设斜率为 k 的直线 l 过定点 p ( - 2 , 1 ) ,求直线 l 与轨迹 C 恰好有一个公共点,两个公共点,三个公共点时 k 的相应取值范围.
计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量 X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量 X 限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
如图,在棱长为2的正方体 A B C D - A 1 B 1 C 1 D 1 中, E , F , M , N 分别是棱 A B , A D , A 1 B 1 , A 1 D 1 的中点,点 P , Q 分别在棱 D D 1 , B B 1 上移动,且 D P = B Q = λ ( 0 < λ < 2 ) .
(1)当 λ = 1 时,证明:直线 B C 1 / / 平面 E F P Q ;
(2)是否存在 λ ,使平面 E F P Q 与面 P Q M N 所成的二面角为直二面角?若存在,求出 λ 的值;若不存在,说明理由.
已知等差数列 a n 满足: a 1 =2 ,且 a 1 , a 2 , a 5 .
(1)求数列 a n 的通项公式. (2)记 S n 为数列 a n 的前 n 项和,是否存在正整数 n ,使得 S n >60n+800? 若存在,求 n 的最小值;若不存在,说明理由.