(本小题满分14分)已知直线经过椭圆:的右焦点和上顶点.(1)求椭圆的标准方程;(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分12分) 已知在中,角,,的对边的边长分别为,,,且. (Ⅰ)求角的大小; (Ⅱ)现给出三个条件:①;②;③. 试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分12分) 已知点Pn(an,bn)都在直线:y=2x+2上,P1为直线与x轴的交点,数列成等差数列,公差为1.(n∈N+) (1)求数列,的通项公式; (2)若f(n)=问是否存在k,使得f(k+5)=2f(k)-2成立;若存在,求出k的值,若不存在,说明理由。 (3)求证:(n≥2,n∈N+)
(本小题满分12分) 已知点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点. (1)求曲线的方程; (2)求m的取值范围.
((本小题满分12分) 如图,在四棱锥中,底面是矩形.已知. (1)证明平面; (2)求异面直线与所成的角的大小; (3)求二面角的大小.
((本小题满分12分) 如图,在棱长为2的正方体中,、分别为、的中点. (1)求证://平面; (2)求证:; (3)求三棱锥的体积.