(本小题满分14分)已知直线经过椭圆:的右焦点和上顶点.(1)求椭圆的标准方程;(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
若抛物线的焦点与椭圆的上焦点重合, 1)求抛物线方程. 2)若是过抛物线焦点的动弦,直线是抛物线两条分别切于的切线,求的交点的纵坐标.
如图,四棱锥中,底面是矩形,,点是的中点,点在边上移动。 1)点为的中点时,试判断与平面的位置关系,并说明理由。 2)证明:无论点在边的何处,都有 3)当等于何值时,与平面所成角的大小为.
已知的两个顶点的坐标分别,且所在直线的斜率之积为,1)求顶点的轨迹.2)当时,记顶点的轨迹为,过点能否存在一条直线,使与曲线交于两点,且为线段的中点,若存在求直线的方程,若不存在说明理由.
设命题:直线有两个公共点,命题:方程表示双曲线,若且为真,求实数的取值范围.
(本小题满分12分) 设是定义域为的奇函数,且它在区间上单调增. (1)用定义证明:在上的单调性; (2)若且试判断的符号; (3)若解关于的不等式.