已知定点,动点是圆(为圆心)上一点,线段的垂直平分线交于点. (I)求动点的轨迹方程;(II)是否存在过点的直线交点的轨迹于点,且满足(为原点).若存在,求直线的方程;若不存在,请说明理由.
(本小题满分12分)如图,四棱锥中,是正三角形,四边形是矩形,且面面,,. (Ⅰ)若点是的中点,求证:面; (Ⅱ)若点在线段上,且,求三棱锥的体积.
(本小题满分12分)在中,已知,. (1)求与的值; (2)若角,,的对边分别为,,,且,求,的值.
(本小题满分12分)将一枚骰子先后抛掷两次,观察向上的点数, (1)求点数之和是5的概率; (2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。
(本小题满分14分)已知椭圆:的上顶点为,且离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)证明:过椭圆:上一点的切线方程为; (Ⅲ)从圆上一点向椭圆引两条切线,切点分别为,当直线分别与轴、轴交于、两点时,求的最小值.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=,PD⊥平面ABCD,PD=AD=1,点分别为AB和PD中点. (Ⅰ)求证:直线AF平面PEC ; (Ⅱ)求PC与平面PAB所成角的正弦值.