如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)求BF与平面ABC所成角的正弦;(3)求二面角B-EF-A的余弦.
如图:已知平面//平面,点A、B在平面内,点C、D在内,直线AB与CD是异面直线,点E、F、G、H分别是线段AC、BC、BD、AD的中点,求证:(Ⅰ)E、F、G、H四点共面;(Ⅱ)平面EFGH//平面.
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:平面A B1D1∥平面EFG; 求二面角的正切值。
如图:在三棱锥中,已知点、、分别为棱、、的中点.(Ⅰ)求证:∥平面;(Ⅱ)若,,求证:平面⊥平面.
已知直线经过直线与直线的交点,且垂直于直线.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成的三角形的面积
焦点在x轴上的双曲线过点且点与两焦点的连线互相垂直。(1)求此双曲线的标准方程;(2)过双曲线的右焦点倾斜角为的直线与双曲线交于A、B两点,求的长。