袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(Ⅰ)3只颜色全相同的概率;(Ⅱ)3只颜色不全相同的概率.(Ⅲ)若摸到红球时得2分,摸到黄球时得1分,求3次摸球所得总分为5的概率。
在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心. ⑴求椭圆E的方程; ⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.
某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米. (1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF面积S△DEF的最大值; (2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF 连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
如图长方体中,底面是正方形,是的中点,是棱上任意一点. ⑴求证:; ⑵如果,求的长.
设向量. ⑴若,求的值; ⑵设函数,求的最大值.
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为. (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围.