(本小题满分12分)已知向量,在函数的图像上,对称中心到对称轴的最小距离为,且当时的最小值为。(1)求的解析式;(2)求的单调递增区间;(3)若对任意x1,x2∈[0,]都有,求实数m的取值范围。
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.(1)求证:;(2)求证:∥平面; (3)求三棱锥的体积.
设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。(1)求椭圆的离心率;(2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。
已知⊙,直线 (1)求证:对,直线与⊙总有两个不同的交点.(2)求弦长的取值范围.(3)求弦长为整数的弦共有几条.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是的中点。(I)求证:;(II)求证://平面.
已知命题:实数满足,命题:实数满足方程表示焦点在轴上的椭圆,且非是非的充分不必要条件,求的取值范围。