(本小题满分12分)已知向量,在函数的图像上,对称中心到对称轴的最小距离为,且当时的最小值为。(1)求的解析式;(2)求的单调递增区间;(3)若对任意x1,x2∈[0,]都有,求实数m的取值范围。
已知为双曲线的左、右焦点. (Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率; (Ⅱ)设双曲线的渐近线方程为,到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.
已知函数,其中为非零常数. (Ⅰ)解关于的不等式;(Ⅱ)若当时,函数的最小值为3,求实数的值.
已知抛物线的准线与x轴交于点Q. (Ⅰ)若过点Q的直线与抛物线有公共点,求直线的斜率的取值范围; (Ⅱ)若过点Q的直线与抛物线交于不同的两点A、B,求AB中点P的轨迹方程.
(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.
已知直线:,直线:.若,求的取值范围.