.(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,,。 (I)求,的通项公式;(II)求数列的前n项和.
已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆上.(I)求椭圆C的方程;(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
如图,在四棱锥中,底面为菱形,,为的中点。(1)若,求证:平面;(2)点在线段上,,试确定的值,使;
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
已知,点在函数的图象上,其中(1)证明:数列是等比数列,并求数列的通项公式;(2)记,求数列的前项和.
设 (1)当,解不等式;(2)当时,若,使得不等式成立,求实数的取值范围.