(本小题满分14分)已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(Ⅱ)若集合是集合的一个元基底,证明:;(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.
已知,求证:
设,且,求证:
已知实数满足,且有求证:
当时,求证:
求证: