(本小题满分14分)已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.(Ⅰ)求水面宽;(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:;(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;(Ⅲ)求二面角的正弦值.
已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足.(Ⅰ)求的面积;(Ⅱ)求函数的单调递增区间.
已知函数,其中.(Ⅰ)若,求函数的极值点;(Ⅱ)若在区间内单调递增,求实数的取值范围.
已知圆心为点的圆与直线相切.(1)求圆的标准方程;(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.