如图,已知A、B、C、D均在已知圆上,AD‖BC,CA平分∠BCD,∠ADC=,四边形ABCD周长为10.(1)求此圆的半径;(2)求圆中阴影部分的面积.
如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;(3) 在(2)的条件下,若sinE=,AK=,求FG的长.
“城市发展 交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度(单位:辆/千米)的函数,且当0<≤28时,V=80;当28<≤188时,V是的一次函数. 函数关系如图所示.(1)求当28<≤188时,V关于的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值. (注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示).
某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
如图,一次函数(为常数)的图象与反比例函数(为常数,且≠0)的图象交于A,B两点,且点A的坐标为(,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.