已知数列中,,,其前项和满足 ().(1)求数列的通项公式;(2)设(),试确定非零整数的值,使得对任意,都有成立.
已知,, ,求证其为直角三角形.
如图,已知矩形ABCD中,,.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
如图,在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.
如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.
某车间生产一种仪器的固定成本是10000元,每生产一台该仪器需要增加投入100元,已知总收入满足函数:,其中是仪器的月产量.(1)将利润表示为月产量的函数(用表示);(2)当月产量为何值时,车间所获利润最大?最大利润是多少元?(总收入=总成本+利润)