(本小题满分12分)已知焦点在轴上的椭圆C1:=1经过A(1,0)点,且离心率为. (I)求椭圆C1的方程; (Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与轴平行时,求h的最小值.
(本小题满分14分)设数列的前项和为,且,其中为常数,.(1)求证:数列是等比数列;(2)若,数列的前项和为,求证:当;(3)设数列的公比为数列满足求证:.
本小题满分12分)设函数(1)求函数的单调增区间;(2)若函数在区间上恰有两个不同的零点,求实数的取值范围.
(本小题满分12分)设,求证:.
(本小题满分12分)已知等差数列的前项和为,(1)求数列的通项公式与前项和;(2)设求证:数列中任意不同的三项都不可能成为等比数列.
(本小题满分12分)如图,在四棱锥中,底面ABCD为菱形,底面,为的中点,为的中点,求证:(1)平面;(2).