如图所示的几何体,从上面看所得到的图形是( ) A B C D
如图,已知二次函数 y = a x 2 + bx + c 的图象与 x 轴相交于 A ( − 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴相交于点 C ( 0 , − 3 ) .
(1)求这个二次函数的表达式;
(2)若 P 是第四象限内这个二次函数的图象上任意一点, PH ⊥ x 轴于点 H ,与线段 BC 交于点 M ,连接 PC .
①求线段 PM 的最大值;
②当 ΔPCM 是以 PM 为一腰的等腰三角形时,求点 P 的坐标.
如图,已知 ⊙ O 是 ΔABC 的外接圆,且 AB = BC = CD , AB / / CD ,连接 BD .
(1)求证: BD 是 ⊙ O 的切线;
(2)若 AB = 10 , cos ∠ BAC = 3 5 ,求 BD 的长及 ⊙ O 的半径.
某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.
(1)这批学生的人数是多少?原计划租用45座客车多少辆?
(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?
为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
(1)本次抽查的样本容量是 ;在扇形统计图中, m = , n = ,“答对8题”所对应扇形的圆心角为 度;
(2)将条形统计图补充完整;
(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.
如图,已知反比例函数 y = k x ( x > 0 ) 的图象与一次函数 y = − 1 2 x + 4 的图象交于 A 和 B ( 6 , n ) 两点.
(1)求 k 和 n 的值;
(2)若点 C ( x , y ) 也在反比例函数 y = k x ( x > 0 ) 的图象上,求当 2 ⩽ x ⩽ 6 时,函数值 y 的取值范围.