(本小题满分l 3分)在数列{an}中,a1=2,an+l=an+cn (n∈N*,常数c≠0),且a1,a2,a3成等比数列.(I)求c的值;(Ⅱ)求数列{an}的通项公式.
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC. (Ⅰ)求证:PC⊥AB; (Ⅱ)求直线BC与平面APB所成角的正弦值 (Ⅲ)求点C到平面APB的距离.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (Ⅰ)求取出的两个球上标号为相同数字的概率; (Ⅱ)求取出的两个球上标号之积能被3整除的概率.
已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
(本题满分10分)已知向量,求 (Ⅰ); (Ⅱ)若的最小值是,求实数的值.
(本题满分10分)已知向量 =(cos,sin),=(cos,sin),||=. (Ⅰ)求cos(-)的值; (Ⅱ)若0<<,-<<0,且sin=-,求sin的值.