选修4-4:坐标系与参数方程已知直线的参数方程是,圆C的极坐标方程为.(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值.
命题:不等式对一切实数都成立;命题:已知函数的图像在点处的切线恰好与直线平行,且在上单调递减。若命题或为真,求实数的取值范围。
己知函数. (I)若关于的不等式的解集不是空集,求实数的取值范围; (II)若关于的一元二次方程有实根,求实数的取值范围.
在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为. (I)写出直线的参数方程;并将曲线的方程化为直角坐标方程; (II)若曲线与直线相交于不同的两点,求的取值范围.
如图所示,己知为的边上一点,经过点,交于另一点,经过点,,交于另一点,与的另一交点为. (I)求证:四点共圆; (II)若切于,求证:.
己知函数. (I)求的极大值和极小值; (II)当时,恒成立,求的取值范围.