.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求(1)BC边上的中线AD所在的直线方程;(2)△ABC的面积。
(本小题满分12分) 数列中,,且点在直线上. (Ⅰ)设,求证:是等比数列; (Ⅱ)设,求的前项和.
(本题满分12分) 已知函数. (1)求在上的最大值; (2)若对任意的实数,不等式恒成立,求实数的取值范围; (3)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
(本题满分12分) 已知点都在直线上,为直线与轴的交点,数列成等差数列,公差为1.() (1)求数列,的通项公式; (2)求证:…… + (2,)
(本题满分12分) 在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
(本题满分12分) 某工厂在试验阶段大量生产一种零件。这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响。若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品. (Ⅰ)求一个零件经过检测为合格品的概率是多少? (Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少? (Ⅲ)任意依次抽取该种零件4个,设表示其中合格品的个数,求与.