(本小题满分12分)设函数定义在上,,导函数,.(1)求的单调区间和最小值;(2)讨论与的大小关系;
已知⊙C:x2+y2+2x-4y+1=0. (1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程. (2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示. (1)证明:AD⊥平面PBC; (2)求三棱锥D-ABC的体积; (3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
如果实数满足求: (1)的最值; (2)的最大值.
已知全集,集合,集合; (1)求集合、; (2)求.