(本小题满分12分)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。
甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
若三人各射击一次,恰有k名选手击中目标的概率记为. (1)求X的分布列; (2)若击中目标人数的均值是2,求P的值.
掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值。
从1到9的九个数字中取三个偶数四个奇数,试问: ①能组成多少个没有重复数字的七位数? ②上述七位数中三个偶数排在一起的有几个? ③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个? ④在①中任意两偶然都不相邻的七位数有几个?
已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二项式系数.
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求 (1)恰有1人译出密码的概率; (2)若达到译出密码的概率为,至少需要多少乙这样的人.