( 请考生在第22~23两题中任选一题做答,如果多做,则按所做的第一题记分。 22.(本小题满分12分) 已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行. (1)求f(x)的解析式; (2)求函数g(x)=f(x2)的单调递增区间.
定义在R上的奇函数有最小正周期4,且时,。 (1)求在上的解析式; (2)判断在上的单调性,并给予证明; (3)当为何值时,关于方程在上有实数解?
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元; 当万元时,万元。(参考数据:) (1)求的解析式; (2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。
已知函数. (1)若函数的定义域和值域均为,求实数的值; (2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;
已知 (1)若=l,求 ; (2)若,求实数的取值范围.
已知抛物线的焦点为,过任作直线(与轴不平行)交抛物线分别于两点,点关于轴对称点为, (1)求证:直线与轴交点必为定点; (2)过分别作抛物线的切线,两条切线交于,求的最小值,并求当取最小值时直线的方程.