(本小题满分10分)求下列函数的导数:(1) (2)
(本小题满分10分)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且a=2csinA(Ⅰ)确定角C的大小: (Ⅱ)若c=,且△ABC的面积为,求a+b的值。
已知等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足().(1)求数列的通项公式;(2)试确定的值,使得数列为等差数列;(3)当为等差数列时,对任意正整数,在与之间插入2共个,得到一个新数列.设是数列 的前项和,试求满足的所有正整数的值。
在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2,其中右焦点F2也是拋物线C2:y2 = 4x的焦点,点M为C1与C2在第一象限的交点,且|MF2| = .(1)求椭圆C1的方程;(2)设,是否存在斜率为k (k≠0)的直线l与椭圆C1交于A、B两点,且|AE| = |BE|?若存在,求k的取值范围;若不存在,请说明理由.
某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
如图,在等腰梯形ABCD中,AB∥DC,AB = 4,CD = 2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO = 2,EA∥PO.(1)求证:BD⊥平面EAC;(2)求二面角E—AC—P的平面角的余弦值.