.(本小题满分12分)如图5所示的多面体是由底面为的长方体被截面所截 而得到的,其中.(1)求;(2)求点到平面的距离.
已知动点P到定点A(5,0)的距离与到定直线的距离的比是,求P点的轨迹方程,并画出轨迹示意图。
已知数列的相邻两项是关于的方程的两根,且(1)求证:数列是等比数列;(2)求数列的前项和;(3)若对任意的都成立,求的取值范围。
如图,在直角坐标系中有一直角梯形,的中点为,,,,,,以为焦点的椭圆经过点.(1)求椭圆的标准方程;(2)若点,问是否存在直线与椭圆交于两点且,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.
设函数(1)当时,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求实数的取值范围;(3)设函数,若在上至少存在一点使成立,求实数的取值范围。
双曲线的一条渐近线方程是,坐标原点到直线的距离为,其中(1)求双曲线的方程;(2)若是双曲线虚轴在轴正半轴上的端点,过点作直线交双曲线于点,求时,直线的方程.