.已知函数(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若一次函数的图象与该函数的图象恰好只有一个交点,求m的值 及这个交点的坐标.
如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的. (1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标; (2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标; (3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为、,斜边为).
如图,AB为⊙O的直径,点C在⊙O上,点D在AB的延长线上,且AC=CD,已知∠D=30°. ⑴判断CD与⊙O的位置关系,请说明理由 ⑵若弦CF⊥AB,垂足为E,且CF=,求图中阴影部分的面积.
在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点. (1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由; (2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上, 求a,b的值.
若关于y的不等式的整数解是-3、-2、-1、0、1,确定t的取值范围。
南昌地铁一号线即将开通,给南昌市民的出行带来变化.小王和小林准备利用课余时间,以问卷的方式对市民的出行方式进行调查.如图是南昌地铁一号线图(部分站名),小王和小林分别从A站、B站、C站这三站中,随机选取一站作为调查的站点. ⑴在这三站中,小王选取问卷调查的站点是A站的概率是多少?(请直接写出结果) ⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)