(本小题满分14分)在四棱锥中,底面是直角梯形,∥,,,平面平面.(Ⅰ)求证:平面; (Ⅱ)求平面和平面所成二面角(小于)的大小;(Ⅲ)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
如图所示,已知圆,定点,为圆上一动点,点在上,点在上,且满足,,点的轨迹为曲线.(Ⅰ) 求曲线的方程;(Ⅱ) 若点在曲线上,线段的垂直平分线为直线,且成等差数列,求的值,并证明直线过定点;(Ⅲ)若过定点(0,2)的直线交曲线于不同的两点、(点在点、之间),且满足,求的取值范围.
(本小题满分14分)如图,三棱锥中,,.(Ⅰ)求证:平面;(Ⅱ)若为线段上的点,设,问为何值时能使直线平面;(Ⅲ)求二面角的大小.
(本小题满分12分)已知函数,在函数图像上一点处切线的斜率为3.(Ⅰ)若函数在时有极值,求的解析式; (Ⅱ)若函数在区间,上单调递增,求的取值范围.
袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分.(Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率;(Ⅱ)求该生两次摸球后恰好得2分的概率;(Ⅲ)求该生两次摸球后得分的数学期望.
已知函数. (Ⅰ)求的最小正周期;(Ⅱ)求当时,的最大值及最小值;(Ⅲ)求的单调递增区间.