本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()在区间上有最大值和最小值.设.(1)求、的值;(2)若不等式在上有解,求实数的取值范围;(3)若有三个不同的实数解,求实数的取值范围.
已知直线 l : y = x + m , m ∈ R .
(I)若以点 M 2 , 0 为圆心的圆与直线 l 相切与点 P ,且点 P 在 y 轴上,求该圆的方程; (II)若直线 l 关于x轴对称的直线为 l ` ,问直线 l ` 与抛物线 C : x 2 = 4 y 是否相切?说明理由.
已知函数的图象经过其中为自然对数的底数,.(Ⅰ)求实数;(Ⅱ)求的单调区间;(Ⅲ)证明:对于任意的,都有成立.
已知双曲线:的右焦点为,在的两条渐近线上的射影分别为、,是坐标原点,且四边形是边长为的正方形.(Ⅰ)求双曲线的方程;(Ⅱ)过的直线交于、两点,线段的中点为,问是否能成立?若成立,求直线的方程;若不成立,请说明理由.
数列中,,,.(Ⅰ)证明:数列是等比数列,并求;(Ⅱ)求数列的前项和.
如图,在四棱锥中,平面,,,.(Ⅰ)证明:;(Ⅱ)求与平面所成角的大小.