如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x+bx+c (a≠0)经过点A、C.求抛物线的解析式;设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由
化简:(1)x2+5y-4x2-3y-1;(2)7a+3(a-3b)-2(b-a).
在数轴上把下列各数表示出来,并用“<”连接各数.,0,,,.
如图1,抛物线经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线和直线BC的解析式;(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
对x,y定义一种新运算T,规定:(其中、均为非零常数),这里等式右边是通常的四则运算,例如:.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求、的值;②若关于的方程T有实数解,求实数的值;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则、应满足怎样的关系式?
为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出1600盒,每盒售价每提高1元,每天要少卖出20盒.(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(2)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?