如图1,抛物线经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线和直线BC的解析式;(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:
销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+. (1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系. (2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?
已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F. (1)当直线m经过B点时,如图1,易证EM=CF.(不需证明) (2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.
如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′. (1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式; (2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.
“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.
请根据图表中提供的信息解答下列问题: (1)填空:m= ,n= ,扇形统计图中D组所占的百分比为 . (2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示); (3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?
(1)先化简,再求值:,其中x=2015. (2)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC,点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面的距离为2米,OC=8米. ①请建立适当的直角坐标系,求抛物线的函数解析式;(需要画出你建立的直角坐标系) ②为了安全美观,现需要在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省时的点P?请写出找法.(无需证明)(支柱与地面、造型对接方式的用料多少问题暂不考虑)