(本题10分)某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费,假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元。(1)分别写出顾客甲按A,B两种方式计费的上网费y元与上网时间x分钟之间的函数关系式。(2)如何选择计费方式能使甲上网费更合算。
(11·湖州)(本小题8分) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并 绘制成如下频数分布折线图(图1)。 ⑴请根据图1,回答下列问题: ①这个班共有▲名学生,发言次数是5次的男生有▲人、女生有▲人; ②男、女生发言次数的中位数分别是▲次和▲次; ⑵通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数。
(11·湖州)(本小题8分) 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2。 ⑴求OE和CD的长; ⑵求图中阴影部队的面积。
(11·湖州)(本小题6分) 已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点。 ⑴求k,b的值; ⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值。
(11·湖州)(本小题6分)因式分解:a3-9a
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1, y1)和N(x2,y2)两点(其中x1<0,x2<0). (1)求b的值. (2)求x1•x2的值 (3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状, 并证明你的结论. (4)对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相 切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.