(Ⅰ)设函数,求的最小值;(Ⅱ)设正数满足,证明
已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.(1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过、两点的直线交轴于点,若, 求直线的方程;(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
已知函数(1)求函数的极值;(2)设函数若函数在上恰有两个不同零点,求实数的取值范围.
在数列中,其前项和为,满足.(1)求数列的通项公式;(2)设,求数列的前项和.
如图,四棱锥中,面,、分别为、的中点,.(1)证明:∥面;(2)证明:
在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人. (1)求该考场考生中“阅读与表达”科目中成绩为的人数; (2)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分; (3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.