已知函数,。(1)求实数的值;(2)若,求的值;(3)求在上的值域。
如图;已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点。求证:为定值.
已知关于x的函数(1)当时,求函数的极值;(2)若函数没有零点,求实数a取值范围.
已知数列{an},,,记,,,若对于任意,A(n),B(n),C(n)成等差数列.(1)求数列{an}的通项公式;(2)求数列{|an|}的前n项和.
对一批共50件的某电器进行分类检测,其重量(克)统计如下:
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A”型2件(1)从该批电器中任选1件,求其为“B”型的概率;(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证: EC⊥CD;(2)求证:AG∥平面BDE;(3)求:几何体EG-ABCD的体积.