对一批共50件的某电器进行分类检测,其重量(克)统计如下:
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A”型2件(1)从该批电器中任选1件,求其为“B”型的概率;(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.
在中,角所列边分别为,且 (Ⅰ)求角; (Ⅱ)若,试判断取得最大值时形状
已知 (1)解关于的不等式 (2)若不等式的解集为求实数的值 .
已知等差数列的前项和为,且. (Ⅰ)求的通项公式; (Ⅱ)设,求证:是等比数列,并求其前项和.
已知定义在实数集上的函数,,其导函数记为,且满足:,为常数. (Ⅰ)试求的值; (Ⅱ)设函数与的乘积为函数,求的极大值与极小值; (Ⅲ)试讨论关于的方程在区间上的实数根的个数.
某商店经销一种纪念品,每件产品成本为元,且每卖出一件产品,需向税务部门上交元(为常数,)的税收,设每件产品的日售价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比,已知每件产品的日售价为元,日销售量为件。 (1)求商店的日利润元与每件产品的日售价元的函数关系式; (2)当每件产品的日售价为多少时该商店的日利润最大,说明理由.