等比数列 { a n } 的前 n 项和为 S n ,已知对任意的 n ∈ N + ,点 ( n , S n ) ,均在函数 y = b x + r ( b > 0 且 b ≠ 1 , b , r 均为常数)的图像上. (1)求 r 的值; (11)当 b = 2 时,记 b n = 2 ( log 2 a n + 1 ) ( n ∈ N + ) ,证明:对任意的 n ∈ N + ,不等式 b 1 + 1 b 1 · b 2 + 1 b 2 . . . . . . b n + 1 b n > n + 1 成立.
(本题12分)定义在R上的函数,已知在上有最小值3。 (1)求的单调区间; (2)求在上的最大值。
(本题12分)已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数; (2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.
(本大题满分14分) 函数与的图象有公共点,且它们的图象在该点处的切线相同。记。 (Ⅰ)求的表达式,并求在上的值域; (Ⅱ)设,函数,。若对于任意,总存在,使得,求实数的取值范围。
(本大题共13分) 已知函数是定义在R的奇函数,当时,. (1)求的表达式; (2)讨论函数在区间上的单调性; (3)设是函数在区间上的导函数,问是否存在实数,满足并且使在区间上的值域为,若存在,求出的值;若不存在,请说明理由。
(本大题满分12分) 设为实常数,函数, ⑴若函数的图象在点处的切线的倾斜角为,求函数的单调区间; ⑵若存在,使,求的取值范围。