(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.(1)求椭圆的方程;(2)求的取值范围.
(1)已知,且,求的值;(2)已知为第二象限角,且,求的值.
已知函数,曲线上是否存在两点,使得△是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上.如果存在,求出实数的范围;如果不存在,说明理由.
已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.
已知函数,函数与函数图像关于轴对称.(1)当时,求的值域及单调递减区间;(2)若,求值.
已知函数.(1)求函数的单调递增区间;(2)若对任意,函数在上都有三个零点,求实数的取值范围.