(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.(1)求椭圆的方程;(2)求的取值范围.
甲、乙两篮球运动员上赛季每场比赛的得分如下:甲:12,15,24,25,31,31,36,36,37,39,44,49,50;乙:8,13,14,16,23,26,27,33,38,39,51.试比较这两位运动员的得分水平.
已知函数(),.(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;(Ⅱ)在(Ⅰ)的条件下,求证:;(Ⅲ)若,试探究函数与的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.
已知函数. (I)判断的奇偶性; (Ⅱ)设函数在区间上的最小值为,求的表达式; (Ⅲ)若,证明:方程有两个不同的正数解.
已知函数()的部分图像, 是这部分图象与轴的交点(按图所示),函数图象上的点满足:.(Ⅰ)求函数的周期;(Ⅱ)若的横坐标为1,试求函数的解析式,并求的值.
某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中、均为常数,且)(I)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)(II)若,,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);(III)在(II)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.