在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=,且.(1)求角C的大小;(2)求△ABC的面积.
已知椭圆的离心率,长轴的左右端点分别为,.(1)求椭圆的方程;(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.求证:以为直径的圆过定点.
已知函数,(其中常数)(1)当时,求曲线在处的切线方程;(2)若存在实数使得不等式成立,求的取值范围.
如图在四棱锥中,底面是矩形,平面,,点是中点,点是边上的任意一点.(1)当点为边的中点时,判断与平面的位置关系,并加以证明;(2)证明:无论点在边的何处,都有;(3)求三棱锥的体积.
已知关于的一次函数(1)设集合和,分别从集合和中随机取一个数作为,,求函数是增函数的概率;(2)若实数,满足条件,求函数的图象不经过第四象限的概率.
在中,角,,所对的边分别为为,,,且(1)求角;(2)若,,求,的值.