(本小题满分13分)如图,某工厂生产的一种无盖纸筒为圆锥形,现一客户订制该圆锥纸筒,并要求该圆锥纸筒的容积为π立方分米.设圆锥纸筒底面半径为r分米,高为h分米.(1)求出r与h满足的关系式;(2)工厂要求制作该纸筒的材料最省,求最省时的值.
(本小题满分12分)为等腰直角三角形,,,、分别是边和的中点,现将沿折起,使面面,是边的中 点,平面与交于点.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
(本小题满分12分)已知数列满足,,令.(Ⅰ)证明:数列是等差数列;(Ⅱ)求数列的通项公式.
(本小题满分12分)设是锐角三角形,三个内角,,所对的边分别记为,,,并且.(Ⅰ)求角的值;(Ⅱ)若,,求,(其中).
(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.(Ⅰ)判断直线与曲线的位置关系;(Ⅱ)设为曲线上任意一点,求的取值范围.