(本小题满分13分)如图,某工厂生产的一种无盖纸筒为圆锥形,现一客户订制该圆锥纸筒,并要求该圆锥纸筒的容积为π立方分米.设圆锥纸筒底面半径为r分米,高为h分米.(1)求出r与h满足的关系式;(2)工厂要求制作该纸筒的材料最省,求最省时的值.
记U=R,若集合,,则 (1)求 , ; (2)若集合=,,求的取值范围;
试比较1.70.2 、log2.10.9与0.82.1的大小关系,并按照从小到大的顺序排列为
正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。 (1)试判断直线AB与平面DEF的位置关系,并说明理由; (2)求二面角E—DF—C的余弦值; (3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点. (1)求证:平面EBD⊥平面SAC; (2)设SA=4,AB=2,求点A到平面SBD的距离;
如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE; (2)求证:AE∥平面BFD; (3)求三棱锥C-BGF的体积.