(本小题满分12分)某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为,二等品率为;B型产品的一等品率为,二等品率为。生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元。设生产各件产品相互独立。(1)求生产4件A型产品所获得的利润不少于10万元的概率;(2)记(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求的分布列及期望值.
已知向量=(sin(+x),cosx),="(sinx,cosx)," f(x)= ·.(1)求f(x)的最小正周期和单调增区间;(2)如果三角形ABC中,满足f(A)=,求角A的值.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
已知函数处取得极小值-4,使其导函数的取值范围为(1,3)。(1)求的解析式及的极大值;(2)当的最大值。
已知函数(1)若上单调递增,且,求证:(2)若处取得极值,且在时,函数的图象在直线的下方,求c的取值范围.
已知函数,其中a为常数. (1)若当恒成立,求a的取值范围;(2)求的单调区间.