(本小题满分12分)如图,多面体AED-BFC的直观图及三视图如图所示,M、N分别为AF、BC的中点。(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积;(3)求证:。
命题函数既有极大值又有极小值; 命题直线与圆有公共点. 若命题“或”为真,且命题“且”为假,试求实数的取值范围.
定义函数为的阶函数. (1)求一阶函数的单调区间; (2)讨论方程的解的个数; (3)求证:.
已知函数. (1)若在区间单调递增,求的最小值; (2)若,对,使成立,求的范围.
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为. (1)求过点P,C,B,G四点的球的表面积; (2)求直线到平面所成角的正弦值; (3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.
甲乙两人拿两颗骰子做投掷游戏,规则如下:若掷出的点数之和为3的倍数,原掷骰子的人再继续掷,否则,由对方接着掷。第一次由甲开始掷。 (1)分别求第二次、第三次由甲掷的概率; (2)求前4次抛掷中甲恰好掷两次的概率.