已知为的三个内角的对边,如果成等差数列,,的面积为,求。
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为, 1)求证:平面平面2)求二面角的平面角的正切值.
若抛物线的焦点与椭圆的上焦点重合,1)求抛物线方程.2)若是过抛物线焦点的动弦,直线是抛物线两条分别切于的切线,求的交点的纵坐标.
如图,四棱锥中,底面是矩形,,点是的中点,点在边上移动。1)点为的中点时,试判断与平面的位置关系,并说明理由。2)证明:无论点在边的何处,都有3)当等于何值时,与平面所成角的大小为.
已知的两个顶点的坐标分别,且所在直线的斜率之积为,1)求顶点的轨迹.2)当时,记顶点的轨迹为,过点能否存在一条直线,使与曲线交于两点,且为线段的中点,若存在求直线的方程,若不存在说明理由.
设命题:直线有两个公共点,命题:方程表示双曲线,若且为真,求实数的取值范围.