已知无穷数列中,是以10为首项,以-2为公差的等差数列;是以为首项,以为公比的等比数列,并对任意,均有成立.(Ⅰ)当时,求; (Ⅱ)若,试求的值;(Ⅲ)判断是否存在,使成立,若存在,求出的值;若不存在,请说明理由.
人们打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌,这时,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本.问这种抽样方法是否为简单随机抽样?
若函数在点处的切线方程为(1)求的值;(2)求的单调递增区间;(3)若对于任意的,恒有成立,求实数的取值范围(其中e为自然对数的底数).
如图5,四棱锥中,底面为矩形,底面,,分别为的中点(1)求证:面;(2)若,求与面所成角的余弦值.
在各项均为正数的数列中,前项和满足。(1)证明是等差数列,并求这个数列的通项公式及前项和的公式;(2)在平面直角坐标系面上,设点满足,且点在直线上,中最高点为,若称直线与轴、直线所围成的图形的面积为直线在区间上的面积,试求直线在区间上的面积;(3)若存在圆心在直线上的圆纸片能覆盖住点列中任何一个点,求该圆纸片最小面积.
在以为原点的直角坐标系中,点为的直角顶点,若,且点的纵坐标大于0(1)求向量的坐标;(2)是否存在实数,使得抛物线上总有关于直线对称的两个点?若存在,求实数的取值范围,若不存在,说明理由.