(本小题满分10分)选修4-1:几何证明选讲已知在中,是上一点,的外接圆交于,.(1)求证:;(2)若平分,且,求的长.
如图,SA⊥平面ABCD,四边形ABCD为正方形,SA=,AB=1. (1)求证:AB⊥平面SAD (2)求异面直线AB与SC所成角的大小.
已知等比数列中,.求 (1)等比数列的通项公式; (2)数列的前6项和
已知三角形ABC的三个内角∠A、∠B、∠C所对的边长分别为a、b、c,且A是锐角,sinA=,c="2" ,b=3. (1)求cosA , tanA (2)求a的值.
(本小题满分14分) 设数列的前项和为,已知,(为常数,,),且成等差数列. (1)求的值; (2)求数列的通项公式; (3)若数列是首项为1,公比为的等比数列,记,,.证明:.
(本小题满分14分) 已知的周长为,且,的面积为, (1)求边的长; (2)求的值.