某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的圆盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动圆盘2次,所获得的返券金额是两次金额之和. (1)若某位顾客消费128元,求返券金额不低于30元的概率; (2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记 为(元).求随机变量的分布列和数学期望.
(13分)已知钝角三角形中,为钝角,若向量.且. (1)求的大小; (2)设函数,若恒成立,求实数的取值范围.
(本小题满分12分)已知以原点为中心,F(,0)为右焦点的椭圆C,过点F垂直于轴的弦AB长为4.(1).求椭圆C的标准方程.(2).设M、N为椭圆C上的两动点,且,点P为椭圆C的右准线与轴的交点,求的取值范围.
(本小题满分12分)如图所示,正四棱锥中,AB=1,侧棱与底面所成角的正切值为.(1)求二面角P-CD-A的大小.(2)设点F在AD上,,求点A到平面PBF的距离.
(本小题满分12分)已知函数的导函数为偶函数,直线是的一条切线.(1).求的值 (2).若,求的极值.
(本小题满分13分)已知向量,,函数. (1)求函数的最小正周期;(2)若时,求的值域.