(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.
某商场准备购进,两种书包,每个种书包比种书包的进价少20元,用700元购进种书包的个数是用450元购进种书包个数的2倍,种书包每个标价是90元,种书包每个标价是130元.请答案下列问题:
(1),两种书包每个进价各是多少元?
(2)若该商场购进种书包的个数比种书包的2倍还多5个,且种书包不少于18个,购进,两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,种书包各有几个?
在等腰中,,点,在射线上,,过点作,交射线于点.请答案下列问题:
(1)当点在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点.
(2)当点在线段的延长线上,是的角平分线时,如图②;当点在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若,则 .
在一条公路上依次有,,三地,甲车从地出发,驶向地,同时乙车从地出发驶向地,到达地停留0.5小时后,按原路原速返回地,两车匀速行驶,甲车比乙车晚1.5小时到达地.两车距各自出发地的路程(千米)与时间(小时)之间的函数关系如图所示.请结合图象信息答案下列问题:
(1)甲车行驶速度是 千米1时,,两地的路程为 千米;
(2)求乙车从地返回地的过程中,(千米)与(小时)之间的函数关系式(不需要写出自变量的取值范围);
(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.
某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表答案下列问题:
抽样调查学生喜欢大课间活动人数的统计表
项目
人数
排球
6
篮球
毽球
10
羽毛球
4
跳绳
18
(1)本次抽样调查的学生有 50 人,请补全条形统计图;
(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;
(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?
在中,,,.以为边作周长为18的矩形,,分别为,的中点,连接.请你画出图形,并直接写出线段的长.