已知锐角△ABC的三内角A、B、C的对边分别是a,b,c.且(b2+c2-a2)tanA=bc.(1)求角A的大小;(2)求的值
设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法. (I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间: (II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r: (III)选取∈(O,1),,由(I)可确定含峰区间为或,在所得的含峰区间内选取,由与或与类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)
已知数列满足: (1)若,求数列的前30项和的值; (2)求证:对任意的实数a,总存在正整数m,使得当n>m()时, 成立。
某产品按质最分成6种不同档次。假设工时不变,每天可生产最低档次40件。若每提高一个档次,每件利润增加1元,但是每天要少生产2件产品。 (1)若最低档次产品利润每件为16元时,问生产哪种档次产品每天所获利润最大? (2)由于原材料价格的浮动,生产最低档次产品每什利润a [8,24]元,那么生产哪种档次产品利润最大?
已知:以点为圆心的圆与x轴交于点O,A,与Y轴交于点O,B,其中O为原点. (1)求证:△OAB的面积为定值: (2)设直线y=-2x+4与圆C交于点M,N,若OM= ON,求圆C的方程.
.已知矩形中,,为的中点,沿将折起,使,分别为的中点。(1)求证:直线(2)求证:面