(本小题13分)已知是关于的方程的两个实根,且,求的值
设不等式的解集为M,. (1)证明:; (2)比较与的大小,并说明理由.
已知曲线的直角坐标方程为. 以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. P是曲线上一点,,,将点P绕点O逆时针旋转角后得到点Q,,点M的轨迹是曲线. (1)求曲线的极坐标方程; (2)求的取值范围.
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分. (1)证明:AE是圆的切线; (2)如果,,求CD.
已知函数,. (1)当时,证明:; (2)若,求k的取值范围.
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限. (1)求抛物线C的方程及点M的坐标; (2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.