已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.(1)如图1,当点E在直径AB上时,试证明:OE·OP=r2(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
列方程(组 ) 解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 600 m 2 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 35 m ,另外三面用 69 m 长的篱笆围成,其中一边开有一扇 1 m 宽的门(不包括篱笆).求这个茶园的长和宽.
如图所示,某建筑物楼顶有信号塔 EF ,卓玛同学为了探究信号塔 EF 的高度,从建筑物一层 A 点沿直线 AD 出发,到达 C 点时刚好能看到信号塔的最高点 F ,测得仰角 ∠ ACF = 60 ° , AC 长7米.接着卓玛再从 C 点出发,继续沿 AD 方向走了8米后到达 B 点,此时刚好能看到信号塔的最低点 E ,测得仰角 ∠ B = 30 ° .(不计卓玛同学的身高)求信号塔 EF 的高度(结果保留根号).
某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目 A ) ,800米中长跑(记为项目 B ) ,跳远(记为项目 C ) ,跳高(记为项目 D ) ,即从 A , B , C , D 四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.
如图, ΔABC 中, D 为 BC 边上的一点, AD = AC ,以线段 AD 为边作 ΔADE ,使得 AE = AB , ∠ BAE = ∠ CAD .求证: DE = CB .
解不等式组: x + 1 < 2 , 2 ( 1 - x ) ⩽ 6 · 并把解集在数轴上表示出来.