在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C. 求点A的坐标; 当∠ABC=45°时,求m的值; 已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.(友情提示:自画图形)
已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的解析式;(2)当为何值时,有最小值?最小值是多少?(3)若A(,),B(,)都在该抛物线上,试比较y1和y2的大小.
已知抛物线.(1)求证:该抛物线与轴一定有两个交点;(2)若该抛物线与轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。
如图,A(-1,0),B(2,-3)两点都在一次函数与二次函数的图象上.(1)求和,的值;(2)请直接写出当>时,自变量的取值范围.
二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.
已知抛物线与轴交点的横坐标分别为-1和2,且经过点(3,8),求这个抛物线的解析式.